Abstract
In dye-sensitized solar cells (DSSC), controlling the dye-aggregation on TiO2 and charge recombination between electrons present in TiO2 and electrolyte can be achieved by wrapping the long alkyl groups around the dye structure and further introducing bulky donor on the dye is a potential approach to enhance both the open-circuit potential and short-circuit current parameters. Additionally, bulky donor containing dye structures modulates the photophysical and electrochemical properties of the sensitizer which helps reducing the over potentials required for the dye regeneration process by utilizing a multidentate ligand containing [Cu(tme)]2+/+ and I−/I3− redox electrolytes. Hagfeldt donor appended far-red NIR active unsymmetrical squaraine dye (SQ-HF) has been designed, synthesized, and characterized. SQ-HF dye showed an intense absorption at 676 nm (ε 1.7 × 105 M−1cm−1). Photophysical and electrochemical studies indicated that the LUMO and HOMO energy levels of the SQ-HF dye were suited for charge injection (from the LUMO of the dye to the conduction band of TiO2) and dye-regeneration processes, respectively. The DSSC device efficiency of 5.15 % (JSC of 10.83 mA/cm2 and VOC of 0.690 V) has been achieved for SQ-HF dye by utilizing a literature reported [Cu(tme)]2+/+ and 4.11 % (JSC of 8.74 mA/cm2 and VOC of 0.702 V) in I−/I3− redox shuttles, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry & Photobiology, A: Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.