Abstract
Dye-sensitized solar cells (DSCs) show potential as a low cost alternative to silicon solar cells. Power conversion efficiencies exceeding 12% have been achieved for DSCs. Typical DSCs are based on TiO(2) nanoparticle photoanodes, which have numerous grain boundaries, surface defects and trap states as electrons transport from one particle to the other. Such defects and trap states increase back charge transfer (charge recombination) from the photoanode to electrolyte. One dimensional (1D) nanostructures such as nanofibers, nanorods, nanowires, and nanotubes can offer direct and fast electron transport to the electron collecting electrode. However, these 1D nanostructures have a major disadvantage of having insufficient surface area and inefficient dye attachment. To solve this challenge, mixtures of TiO(2) nanoparticles and 1D nanostructures (e.g. nanofibers, nanorods, nanowires, and nanotubes) are used to take advantage of the large surface area of nanoparticles and efficient charge transport of 1D nanostructures. In this article, we review the recent developments in using mixtures of 1D nanostructures and nanoparticles as photoanodes for efficient DSCs. Various randomly oriented and vertically aligned 1D nanostructures and their composites with nanoparticles are discussed. Future increase of efficiency in DSCs using 1D nanostructure/nanoparticle composites will rely on the optimization of diameters of 1D nanostructures, control of ratios of 1D nanostructures and nanoparticles, increase of crystallinity, and reduction of surface defects on the 1D nanostructures. This work will provide guidance for designing and growing appropriate 1D nanostructures, and combining them with nanoparticles at an optimal ratio for efficient DSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.