Abstract

Abstract Decadal variability of summertime Great Plains surface temperature is probed from the perspective of the Great Plains low-level jet (GPLLJ). GPLLJ variability modes 2 and 5 are shown to be most influential on the evolution and magnitude of Great Plains surface temperature anomalies over the latter half of the twentieth century, including the development of the summertime warming hole and are further linked to the Pacific decadal oscillation (PDO) and Atlantic multidecadal oscillation (AMO), respectively. The connection between GPLLJ variability and Great Plains surface temperature is strongest when the PDO and AMO are oppositely phased, and in the case of the warming hole, a preference for a positive (negative) PDO (AMO). The influence of remote SST variability on the central U.S. warming hole is broadly consistent with previous modeling studies. However, the pivotal role that GPLLJ variability plays in linking the hemispheric-wide SST variability (through the AMO and PDO) to the regional warming hole is an expanded and clarified perspective. These findings unify the results of recent studies from the U.S. Climate Variability and Predictability (CLIVAR) Drought Working Group and have implications for decadal climate prediction efforts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.