Abstract

Simple SummaryDifferential leukocyte count (DSCC) in milk is considered important to improve our knowledge on udder immune response since it describes the proportions of leukocytes in milk. However, we hypothesized that the total amount of each cell population in daily milk production would be even more useful. Therefore, we analyzed the pattern of both DSCC and the total amount of polymorphonuclear neutrophils (PMN) + lymphocytes (LYM) (P + LT), calculated as SCC × milk yield × DSCC (as proportion). Cows with ≤200,000 cells/mL have a P + LT average between 5.0 × 108 and 3.0 × 109 cells. In cows with SCC >200,000 cells/mL, the values were 1.6 × 1010 and 2.5 × 1010 cells. Therefore, the presence of a well-defined inflammatory process increased the overall amount of PMN and lymphocytes LYM of 1 log, from 1 × 109 to 1 × 1010. The assessment of the total amount of PMN and LYM, to our knowledge, has never been reported in scientific literature and the value reported may be proposed as benchmarks for studies on udder immune response. The results of this study showed that cows in first and second lactation have a significant lower amount of PMN + LYM, when compared to cows in third and higher lactation. However, these differences are numerically not very large (7%), suggesting that, in healthy animals, the number of immune cells is kept as constant as possible. To the best of our knowledge, this is the first study describing the pattern of DSCC and the total amount of PMN + LYM in relation to parity, days in milk, and SCC, and it may be considered as a first contribution in the investigation on mammary gland immune response by means of differential cell counts in milk.Differential leukocyte count (DSCC) in milk is considered important to improve knowledge of udder immune response. The investigations on milk DSCC were limited by the techniques available until recently, when a high-throughput tool to perform DSCC opened the way to explore these factors in rapid and economically sustainable ways. We hypothesized that DSCC alone does not fully describe the pattern of these cells, since the total amount is also influenced by milk yield and SCC. Therefore, this study was designed to describe DSCC and total amount of different leukocytes in milk during the course of lactation in cows differing in parity and in levels of SCC. This study considered 17,939 individual milk tests from 12 dairy herds in Lombardy Region, where DCC testing was applied in the period of February 2018–December 2019 (23 months). The samples were divided into two subsets—“healthy” (HS) with SCC ≤200,000 cells/mL and “inflamed” (IS) with SCC >200,000 cells/mL. Cow in HS have a P + LT average between 5.0 × 108 and 3.0 × 109 cells. In IS cows, the values were 1.6 × 1010 and 2.5 × 1010. Therefore, the presence of a well-defined inflammatory process increased the overall amount of polymorphonuclear neutrophils (PMN) and lymphocytes (LYM) of 1 log, from 1 × 109 to 1 × 1010. The assessment of the total amount of PMN and LYM, to our knowledge, have never been reported in scientific literature; the values observed may be proposed as benchmarks for studies on udder immune response. When data were analyzed by days in milk (DIM), they showed that cows in first and second lactation have a significantly lower amount of PMN + LYM, when compared to cows in third and higher lactation. However, these differences are numerically not very large (7%), and suggest that, in healthy animals, the number of immune cells is kept as constant as possible. In IS, the analysis of trends based on DIM showed that both DSCC and P + LT have a significant negative trend. These data suggest that only in this group, the presence of high SCC as lactation proceeds is associated with a progressive increase in the number of macrophages. To the best of our knowledge, this is the first study describing the pattern of DSCC and the total amount of PMN + LYM in relation to parity, days in milk, and SCC, and it may be considered as the first contribution in the investigation on mammary gland immune response by the means of differential cell counts in milk.

Highlights

  • The role of leukocytes in the defense of the mammary gland is well known [1,2], and differential leukocyte count (DSCC) is considered important information on udder immune response and to improve mastitis diagnosis [3,4,5,6]

  • Somatic cell counts (SCC), the tool currently applied for this aim, is not able to completely describe the defense mechanisms within the udder [7]

  • somatic cell counts (SCC) vary in relation to parity, days in milk (DIM), health, and welfare status [12], and these factors very likely have an influence on DSCC

Read more

Summary

Introduction

The role of leukocytes in the defense of the mammary gland is well known [1,2], and differential leukocyte count (DSCC) is considered important information on udder immune response and to improve mastitis diagnosis [3,4,5,6]. Investigations on milk DSCC were limited by the available investigation techniques: direct microscopical and flow-cytometry analysis. Both these techniques have poor reproducibility, high costs, and are labor-intensive, limiting their application to studies with a relatively small sample size. These technical aspects and small sample sizes, in addition to different designs of experiments and sampling procedures could explain why there are very large and overlapping ranges among studies on leukocyte proportions [4,7,8,9,10,11]. SCC vary in relation to parity, days in milk (DIM), health, and welfare status [12], and these factors very likely have an influence on DSCC

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.