Abstract

The reinforced light-harvesting capability, suppressed photocarrier recombination and increased specific surface area represented a possibility of excellent photocatalytic performance for graphitic carbon nitride (g-C3N4)-based photocatalysts. Herein, the porous 1,3,5-Trihydroxybenzene substituted g-C3N4 (denoted as PTBCN) composites with superior visible-light-driven photocatalytic properties were rationally constructed via a two-step reaction combination of freeze-drying and thermal-polymerization. The optimal PTBCN-2 achieved the maximum photocatalytic Rhodamine B (Rh B) degradation and H2O2 evolution rate constants, nearly 6.56 and 3.17 times higher than that of bare g-C3N4. The outstanding performances of PTBCN-2 were probably attributed to the extended specific surface area, robust visible light response, adjusted electronic band structure, accelerated separation and transfer of photocarriers as well as good hydrophilicity. As a result, the above integrated merits were directly responsible for the huge superoxide anion (•O2−) generation, which dominated the efficient photocatalytic reactions. This work provided a new idea to design and construct high efficiency porous aromatic ring substituted g-C3N4-related photocatalysts for organic pollutants degradation and H2O2 production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.