Abstract
Here, we present a facile solid phase method for preparing unique, 3D hexagonal boron nitride (hBN) nanoflowers, which are composed of vertically aligned BN nanoflakes. The growth process of BN nanoflowers is well-controlled by appropriately changing the reaction times and can be explained by a delayed-release mechanism. These BN nanoflowers present good thermal stability and high specific surface area. In addition, the nanoflakes composing the nanoflowers can be easily exfoliated into few-layered graphene-like BN, which is readily dispersible in strong polar organic solvents. By FTIR spectra and theoretical calculation, it is believed that the interaction of BN nanosheet and solvent predominately induces the exfoliation of graphene-like BN. Furthermore, the graphene-like BN film displays superhydrophobicity with a contact angle of 140°.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.