Abstract

In this work, we demonstrate a facile, binder-free technique to fabricate 3D Cu2Se nano-cauliflower with 2D CuS nanosheets as a composite on Ni foam by co-electrodeposition technique for high-performance solid-state supercapacitor. The morphology of the composite (Cu2Se@CuS) was confirmed by the scanning electron microscope and the crystal phases of monoclinic Cu2Se and hexagonal CuS were obtained using X-ray diffraction technique. The Cu2Se@CuS composite delivered an ultra-high specific capacitance of 2727 F g−1, compared to its single compound material Cu2Se (1925 F g−1) and CuS (1156 F g−1), respectively at current density of 2.5 mA cm−2 in three-electrode configuration. Ni foam, as a binder-free conducting substrate, acts as uniform growth point for electrode materials and accelerates the transportation of ions throughout the electrode while the synergistic effect of Cu2Se and CuS and their efficient redox properties contribute to faster diffusion path for both electrolyte ions and electrons. Moreover, the assembled asymmetric solid-state supercapacitor Cu2Se@CuS//AC with PVA-KOH gel as supporting electrolyte delivered an excellent specific energy of 42.7 Wh Kg−1 (1.95 Wh cm−3) at specific power of 381 W kg−1 (17.55 W cm−3). The solid-state device achieved a good cyclic stability of 70.2% capacitance retention even after 8000 cycles. This technique of a simple co-electrodeposition method outlined in this work to engineer 3D/2D nanostructured electrode provides a potential strategy for fabricating high performance, free-standing energy storage devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.