Abstract
In this study, a novel graphene/Ag3PO4 quantum dot (rGO/Ag3PO4 QD) composite was successfully synthesized via a facile one-step photo-ultrasonic-assisted reduction method for the first time. The composites were analyzed by various techniques. According to the obtained results, Ag3PO4 QDs with a size of 1–4 nm were uniformly dispersed on rGO nanosheets to form rGO/Ag3PO4 QD composites. The photocatalytic activity of rGO/Ag3PO4 QD composites was evaluated by the decomposition of methylene blue (MB). Meanwhile, effects of the surfactant dosage and the amount of rGO on the photocatalytic activity were also investigated. It was found that rGO/Ag3PO4 QDs (WrGO:Wcomposite = 2.3%) composite exhibited better photocatalytic activity and stability with degrading 97.5% of MB within 5 min. The improved photocatalytic activities and stabilities were majorly related to the synergistic effect between Ag3PO4 QDs and rGO with high specific surface area, which gave rise to efficient interfacial transfer of photogenerated electrons and holes on both materials. Moreover, possible formation and photocatalytic mechanisms of rGO/Ag3PO4 QDs were proposed. The obtained rGO/Ag3PO4 QDs photocatalysts would have great potentials in sewage treatment and water splitting.
Highlights
Synthesis of photocatalysts with high efficiency has captured the attention of the researchers because of their potential applications in the removal of organic pollutants and hydrogen production [1,2,3]
The R-2.3 exhibited a similar XRD pattern with pure Ag3PO4 quantum dots (QDs), and the broader diffraction peaks were attributed to the small size of Ag3PO4 QDs, which was calculated to be about 3.7 nm according to the Scherrer equation [35]
No diffraction peaks assigned to graphene oxide (GO) and rGO could be observed in the composites (Fig. 1c), which was attributed to the small rGO amount in the composite [36]
Summary
Synthesis of photocatalysts with high efficiency has captured the attention of the researchers because of their potential applications in the removal of organic pollutants and hydrogen production [1,2,3]. We report the design and development of rGO/Ag3PO4 QD composites with high-efficient photocatalytic performance, wherein the Ag3PO4 QDs with a size of 1–4 nm were loaded uniformly on rGO nanosheets via a facile one-step photo-ultrasonic-assisted reduction method for the first time.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.