Abstract

Mixed-dimensional hybrid heterostructures have attracted a lot of experimental attention because they can provide an ideal charge-separated interface for optoelectronic and photonic applications. In this Letter, we have employed first-principles DFT calculations and nonadiabatic dynamics simulations to explore photoinduced interfacial electron and hole transfer processes in two PTB7- nL@MoS2 models ( n = 1 and 5). The interfacial electron transfer is found to be ultrafast and completes within ca. 10 fs in both PTB7-1L@MoS2 and PTB7-5L@MoS2 models, which demonstrates that the electron transfer is not sensitive to the thickness of the PTB7 polymer. Differently, the interfacial hole transfer is sensitive to the thickness of the PTB7 polymer. The transfer time is estimated to be ca. 70 ps in PTB7-1L@MoS2, while it is significantly accelerated to ca. 1 ps in PTB7-5L@MoS2. Finally, we have found that the electron transfer is mainly controlled by adiabatic electron evolution, whereas in the hole transfer, nonadiabatic hoppings play a dominant role. These findings are useful for the design of excellent charge-separated interfaces of mixed-dimensional TMD-based heterojunctions for a variety of optoelectronic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call