Abstract

Colloidal all inorganic CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) have emerged to be an excellent material for applications in light emission, photovoltaics, and photocatalysis. Efficient interfacial transfer of photogenerated electrons and holes are essential for a good photovoltaic and photocatalytic material. Using time-resolved terahertz spectroscopy, we have measured the kinetics of photogenerated electron and hole transfer processes in CsPbBr3 NCs in the presence of benzoquinone and phenothiazine molecules as electron and hole acceptors, respectively. Efficient hot electron/hole transfer with a sub-300 fs time scale is the major channel of carrier transfer thus overcomes the problem related to Auger recombination. A secondary transfer of thermalized carriers also takes place with time scales of 20-50 ps for electrons and 137-166 ps for holes. This work suggests that suitable interfaces of CsPbX3 NCs with electron and hole transport layers would harvest hot carriers, increasing the photovoltaic and photocatalytic efficiencies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.