Abstract

Oil–water separation using special wettability materials has received much attention due to its low energy consumption and high separation efficiency. Herein, a fluorine-free superhydrophobic cotton fabric (PDMS/STA-coated cotton fabric) was successfully prepared by a simple impregnation method using hydroxyl-capped polydimethylsiloxane (PDMS-OH), tetraethoxysilane (TEOS), and stearic acid (STA) as precursors. The investigation found that the cross-linking reactions between the hydroxyl groups of PDMS-OH and hydrolyzed TEOS enabled a strong interaction between PDMS-OH and cotton fabric. Furthermore, a suitable roughness surface of coated cotton fabric was established by introducing STA due to its long chain structure. The contact angle of this composite can reach 158.7° under optimal conditions due to its low surface energy and desired roughness. The oil/water separation efficiency of PDMS/STA-coated cotton fabric is higher than 90% even after 10 cycles of oil–water separation, and the oil flux can reach 11862.42 L m−2 h−1. In addition, PDMS/STA-coated cotton fabric exhibits excellent chemical stability and durability under extreme conditions such as strong acid (HCl, pH = 1~2) and alkali (NaOH, pH = 13~14), and the hydrophobicity of PDMS/STA-coated cotton fabric was decreased to 147° after 300 cycles of abrasion testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.