Abstract

Typical antineoplastic agent doxorubicin (DOX) contamination is a major environmental concern and its efficient purification remains a daunting challenge so far. This work explored the potential of Fe/Pd-doped graphite carbon nitride (g-C3N4@Fe/Pd) for DOX removal from water, involving the removal performance, mechanism, and pathway. Structural characterization of g-C3N4@Fe/Pd showed that the metallic Pd clusters are decorated on the surface of uniformly distributed iron nanoparticles (~ 28 nm) on g-C3N4. The existence of g-C3N4 effectively relieved the agglomeration and overgrowth of iron nanoparticles, the strong coupling effect among the Fe, Pd and N demonstrates the excellent DOX removal performance (k = 0.115 min−1) with versatility under different initial concentrations (30–150 mg/L) and material dosages (0.1–0.4 g/L). Three possible degradation pathways of DOX were proposed, where catalytic saccharide moiety elimination is the primary pathway. Importantly, intermediates exhibit lower toxicity and the final degradation product is efficiently adsorbed by g-C3N4@Fe/Pd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call