Abstract
The MoS2/S-doped graphitic carbon nitride (MoS2/S-g-C3N4) was synthesized by a simple method and applied for methylene blue (MB) removal as an organic pollutant. The structure of MoS2/S-doped graphitic carbon nitride was characterized using FTIR, XRD, SEM, TGA and BET techniques. The accomplishment of MoS2/S-doped graphitic carbon nitride as an adsorbent was investigated to removal of MB from aqueous solution. The various parameters were studied such as: pH, initial MB concentration, adsorbent dose, temperature and time. The best findings were obtained at pH=8, 8 ppm MB concentration, 0.05 g MoS2/S-g-C3N4, 30 min and 22 ˚C. The Langmuir isotherm model was adopted with the obtained data. The kinetic studies were showed that the adsorption of methylene blue can be well described by the second-order equation. Maximum adsorption was calculated as 166 mg/g. The degradation of MB was studied by MoS2/S-doped graphitic carbon nitride under Light Emmition Diode (LED). Results showed that the MoS2/S-doped graphitic carbon nitride can enhance photocatalytic activity compared to pure g-C3N4 and MoS2/g-C3N4. The findings confirmed that the MoS2/S-doped graphitic carbon nitride can be applied as an efficient, low-cost adsorbent, and photocatalyst to remove of cationic dyes such as methylene blue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.