Abstract

Electrically conductive polymers, such as polypyrrole (PPy), have been widely used for the fabrication of various biosensors and tissue engineering scaffolds. For their biologically relevant applications, conductive biomaterials capable of intimate cellular interactions are highly desired. However, conventional methods to incorporate biomolecules into conductive polymers do not offer fine and easy control over the surface density of the biomolecules and/or their stability. We present a novel method to electrochemically immobilize cell-adhesive Arg-Gly-Asp (RGD) ligands on PPy electrode surfaces with a simple control over the peptide surface density by varying the electrodeposition time. Synthesized pyrrole-GGGRGDS conjugates were electrochemically incorporated onto the surfaces of PPy-coated electrodes. The electrochemical impedances of the RGD-grafted PPy electrodes were not significantly different from the unmodified PPy films. Time-of-flight secondary-ion mass spectroscopy confirmed the presence of the RGD motif on the surface of the modified electrodes. In vitro studies with human mesenchymal stem cells (hMSCs) showed higher adhesion and faster proliferation of hMSCs on the PPy with a higher RGD density. This facile electrochemical modification of electrode surfaces allowed for a good control over the peptide surface density and cellular interactions and will benefit the fabrication of cell-interactive scaffolds or bio-electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.