Abstract
Human beings recognize and classify objects with biological senses and brain that processes the input into meaningful information. Other than that humans have come to recognize each other in multiple ways one of which is visual recognition of faces. As a biological trait human faces are certainly a biometric such they are universal, distinctive, mostly permanent and collectable. With that a computerized face recognition system can constructed relying on visual information present on each face uniquely. Generally a face recognition system consists of two main phases, face detection phase where presence of a human face is verified on visual input and face recognition phase where detected face is processed for identification. One of the most sought after methods in field image processing for face recognition is CNN (Convoluted Neural Networks). CNNs have proved its effectiveness and accuracy in many CNN based face detection and face recognition systems. As such in this paper the architecture of CNN is presented. Then different techniques for face detection and face recognition based on CNNs are reviewed. In reviewed papers CNNs have repeatedly demonstrated effectiveness and accuracy on multiple benchmarks for face recognition application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.