Abstract
Face detection and recognition plays an important role in many occasions. This study explored the application of convolutional neural network in face detection and recognition. Firstly, convolutional neural network was briefly analyzed, and then a face detection model including three convolution layers, four pooling layers, introduction layers and three fully connected layers was designed. In face recognition, the self-learning convolutional neural network (CNN) model for global and local extended learning and Spatial Pyramid Pooling (SPP)-NET model were established. LFW data sets were used as model test samples. The results showed that the face detection model had an accuracy rate of 99%. In face recognition, the self-learning CNN model had an accuracy rate of 94.9% accuracy, and the SPP-Net model had an accuracy rate of 92.85%. It suggests that the face detection and recognition model based on convolutional neural network has good accuracy, and the face recognition efficiency of self-learning CNN model was better, which deserves further research and promotion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.