Abstract

Fabrication of three-dimensional microfluidic channels in glasses by water-assisted ablation with femtosecond laser pulses was investigated. The experimental results showed that formation of the photoinduced microchannels by femtosecond pulses depended on the incident laser power and the scanning speed. For the same scanning speed, the shape of cross-section of channels changed from ellipse to circle with increasing the laser power. Under the optimum condition of laser processing, we fabricated two layers of microfluidic channels with diameter of about 8μm inside glass. The distance between two layers of microchannels was about 20μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.