Abstract

Fabrication of a thick strained SiGe layer on bulk silicon is hampered by the lattice mismatch and difference in the thermal expansion coefficients between Si and SiGe, and a high Ge content leads to severe strain in the SiGe film. When the thickness of the SiGe film is above a critical value (90 nm for 18% Ge), drastic deterioration of the film properties as well as dislocations will result. In comparison, a silicon-on-insulator (SOI) substrate with a thin top Si layer can mitigate the problems and so a thick SiGe layer with high Ge concentration can conceivably be synthesized. In the work reported here, a 110 nm thick high-quality strained Si 0.82Ge 0.18 layer was fabricated on an ultra-thin SOI substrate with a 30 nm top silicon layer using ultra-high vacuum chemical vapor deposition (UHVCVD). The thickness of the SiGe layer is larger than the critical thickness on bulk Si. Cross-sectional transmission electron microscopy (XTEM) reveals that the SiGe layer is dislocation-free and the atoms at the SiGe/Si interface are well aligned, even though X-ray diffraction (XRD) data indicate that the SiGe film is highly strained. The strain factors determined from the XRD and Raman results agree well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call