Abstract

Layered double hydroxides (LDHs) with unique layered structure have excellent theoretical capacitance. Nevertheless, the constrained availability of electrically active sites and cationic species curtails their feasibility for practical implementation within supercapacitors. Most of the reported materials are bimetallic hydroxides, and fewer studies are on trimetallic hydroxides. In here, the hollow dodecahedron NiCoZn-LDH is synthesized using CoZn metal–organic frameworks (CoZn-MOFs) as template. Its morphology and composition are studied in detail. Concurrently, the effect of the amount of third component on the resulting structure of NiCoZn-LDH is also researched. Benefiting from its favorable structural and compositional attributes to efficient transfer of ions and electrons, NiCoZn-LDH-200 demonstrates outstanding specific capacitance of 1003.3F g−1 at 0.5 A/g. Furthermore, flexible asymmetric supercapacitor utilizing NiCoZn-LDH-200 as the positive electrode and activated carbon (AC) as the negative electrode reveals favorable electrochemical performances, including a notable specific capacitance of 184.7F g−1 at 0.5 A/g, a power density of 368.21 W kg−1 at a high energy density of 65.66 Wh kg−1, an energy density of 31.78 Wh kg−1 at a high power density of 3985.97 W kg−1, a capacitance retention of 92 % after 8000 cycles at 5 A/g, and a good capacitance retention of 90 % after 500 cycles of bending. The template method presented herein can effectively solve the problem of easy accumulation and improve the electrochemical properties of the materials, which exhibits a broad research prospect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call