Abstract
HypothesisThree-dimensional layered layered double hydroxide (LDH) nanostructure materials grow in-situ on excellent conductive and flexible carbon cloth (CC) substrate not only reduce the ability of binders in resisting ions transfer, but also make them to be quasi-vertically arranged well on substrates without aggregation. This would result in enough electroactive sites, to obtain superior electrochemical performance. ExperimentsA hierarchical CoAl-LDH@NiCo-LDH composite was prepared on a surface-modified carbon cloth by a simple two-step hydrothermal process. In this process, CoAl-LDH nanosheets (NSs)/CC acting as the inner core were wrapped up in NiCo-LDH nanoneedle arrays (NNAs) evenly. Also, a flexible quasi-solid-state supercapacitor device was constructed using CoAl-LDH@NiCo-LDH/CC and activated carbon (AC) as a positive electrode and a negative electrode, respectively. FindingsThe CoAl-LDH@NiCo-LDH/CC developed had an excellent specific capacitance (2633.6F/g at 1 A/g) with remarkable cyclic performance (92.5% retention of its incipient over 5000 cycles at 4 A/g). The flexible quasi-solid-state supercapacitor device CoAl-LDH@NiCo-LDH/CC//AC/CC yielded a splendid energy density of 57.8 Wh/kg at a power density of 0.81 kW/kg and a brilliant power density of 16.09 kW/kg at 38.0 Wh/kg in a broad potential window of 1.55 V. Furthermore, the exceptional cyclic stability and excellent flexibility of the device show it can be applied in flexible energy storage systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have