Abstract

Abstract In this paper, we present a convenient approach to prepare hierarchical structured superhydrophobic coatings with tunable adhesion force, composed of micro-size glass beads, nano-size SiO2 particles and epoxy resin. Surfaces of two types with different roughness were fabricated, one type is only with single-scale roughness demonstrating lotus effect with low sliding angle, the other type is hierarchically micro-nano-structured roughness exhibiting petal effect with high adhesion force. The surface roughness is pivotal for controlling the wetting behavior and regulating the contact angle including the contact angle hysteresis. Varying the density of micro-size glass beads could adjust the roughness of the surface, which means the adhesion force of the prepared surface could be easily controlled based on the proposed method. Through variation of glass beads’ amount, the surface could be designed to pin the water droplet with different adhesion force when the surface turned upside down. The surface wettability, surface morphology, adhesion force of the prepared samples are investigated and mechanism of the Cassie-to-Wenzel state transition are discussed in detail. Furthermore, the convenient method provides a possibility for controlling surface morphology, composition and corresponding surface adhesion which could be applied to various substrates such as tile, wood, steel and fabric.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.