Abstract

Controlling water adhesion is important for superhydrophobic surfaces in many applications. Compared with numerous researches about the effect of microstructures on the surface adhesion, research relating to the influence of surface chemical composition on the surface adhesion is extremely rare. Herein, a new strategy for preparation of tunable adhesive superhydrophobic surfaces through designing heterogeneous chemical composition (hydrophobic/hydrophilic) on the rough substrate is reported, and the influence of surface chemical composition on the surface adhesion are examined. The surfaces were prepared through self-assembling of mixed thiol (containing both HS(CH2)9CH3 and HS(CH2)11OH) on the hierarchical structured copper substrates. By simply controlling the concentration of HS(CH2)11OH in the modified solution, tunable adhesive superhydrophobic surfaces can be obtained. The adhesive force of the surfaces can be increased from extreme low (about 8 μN) to very high (about 65 μN). The following two reasons can be used to explain the tunable effect: one is the number of hydrogen bond for the variation of surface chemical composition; and the other is the variation of contact area between the water droplet and surface because of the capillary effect that results from the combined effect of hydrophilic hydroxyl groups and microstructures on the surface. Noticeably, water droplets with different pH (2-12) have similar contact angles and adhesive forces on the surfaces, indicating that these surfaces are chemical resistant to acid and alkali. Moreover, the as-prepared surfaces were also used as the reaction substrates and applied in the droplet-based microreactor for the detection of vitamin C. This report provides a new method for preparation of superhydrophobic surfaces with tunable adhesion, which could not only help us further understand the principle for the fabrication of tunable adhesive superhydrophobic surfaces, but also potentially be used in many important applications, such as microfluidic devices and chemical microreactors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call