Abstract

The AZ91D Mg matrix composites reinforced by SiC particulate with the sizes of 11 μm, 21 μm and 47 μm were successfully fabricated respectively by vacuum-assisted pressure infiltration technology. Microstructures and particulate distributions were analyzed with scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscope (TEM). The coefficient of thermal expansion (CTE) measurements was performed from 75 °C to 400 °C at a heating rate of 5 °C/min. The results show that the uniform distribution of SiC particulate in metal matrix and density over 98% in theoretical density of composites were fabricated. Only MgO phase was detected at the interface and no brittle phases of Al 4C 3 and Mg 2Si were discovered. The desirable coefficients of thermal expansion of composites were achieved. The intensity of dislocation generation nearby SiC particulate increases significantly with the increasing of SiC particulate size. Therefore, this technology is a potential method to fabricate Mg matrix composites reinforced by SiC particulates with the desirable microstructures and CTE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.