Abstract

Fabrication of nitrogen-doped carbon dots (N-CDs) electrode for the screening of purine metabolic disorder was described in this paper. Peroxynitrite is a short-lived oxidant species that is a potent inducer of cell death. Uric acid (UA) can scavenge the peroxynitrite to avoid the formation of nitrotyrosine, which is formed from the reaction between peroxynitrite and tyrosine (Try). Scavenging the peroxynitrite avoids the inactivation of cellular enzymes and modification of the cytoskeleton. Reduced level of UA decreases the ability of the body from preventing the peroxynitrite toxicity. On the other hand, the abnormal level of UA leads to gout and hyperuricemia. Allopurinol (AP) is administered in UA lowering therapy. Thus, the simultaneous determination of UA, Try and AP using N-CDs modified glassy carbon (GC) electrode was demonstrated for the first time. Initially, N-CDs were prepared from L-asparagine by pyrolysis and characterized by different spectroscopic and microscopic techniques. The HR-TEM image shows that the average size of the prepared N-CDs was 1.8±0.03nm. Further, the N-CDs were directly attached on GC electrode by simple immersion, follows Micheal's nucleophilic addition. XPS of N-CDs shows a peak at 285.3eV corresponds to the formation of C–N bond. The GC/N-CDs electrode shows higher electrocatalytic activity towards UA, Tyr and AP by not only shifting their oxidation potentials toward less positive potential but also enhanced their oxidation currents in contrast to bare GC electrode. The GC/N-CDs electrode shows the limit of detection of 13×10−10M (S/N=3) and the sensitivity of 924μAmM−1cm−2 towards the determination of UA. Finally, the N-CDs modified electrode was utilized for the determination of UA, Tyr and AP in human blood serum and urine samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.