Abstract

Monkeypox is a zoonotic viral infection caused by the monkeypox virus (MPXV), which belongs to the Poxviridae family of the Orthopoxvirus (OPXV) genus. Monkeypox is transmitted from animals to humans and humans to humans; therefore, the accurate and early detection of MPXV is crucial for reducing mortality. A novel graphene-based material, graphene quantum rods (GQRs) was synthesized and confirmed using high-resolution transmission electron microscopy (HR-TEM) and atomic force microscopy (AFM). In this study, molybdenum oxide was electrodeposited and one-pot electrodeposition of MoO3-GQRs composite on carbon fiber paper (CFP) enabled by an antibody (Ab A29)/MoO3-GQRs immunoprobe was developed for the early diagnosis of MPXV protein (A29P). Several studies were conducted to analyze the MoO3-GQRs composite, and the prepared Ab A29/MoO3-GQRs immunoprobe selectively bound to the A29P antigen that was measured using differential pulse voltammetry (DPV) analysis and impedance spectroscopy. The antigen–antibody interaction was analyzed using X-ray photoelectron spectroscopy. DPV analysis showed a wide linear range of detection from 0.5 nM to 1000 nM, a detection limit of 0.52 nM, and a sensitivity of 4.51 µA in PBS. The prepared immunoprobe was used to analyze A29P in serum samples without reducing electrode sensitivity. This system is promising for the clinical analysis of A29P antigen and offers several advantages, including cost-effectiveness, ease of use, accuracy, and high sensitivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.