Abstract

A novel and first electrochemical biosensor based on Deoxyribonucleic acid (DNA) as a biological component to measure an antimigraine drug, rizatriptan benzoate (RZB) for patients under treatment in biological samples was developed. A carbon paste electrode (CPE) was modified by calf thymus (CT) double-stranded (ds)-DNA, nickel ferrite magnetic nanoparticles (NiFe2O4NPs), and gold nanoparticles (AuNPs). The morphology of the CT-DNA/NiFe2O4NPs/AuNPs/CPE was characterized by Field emission scanning electron microscope (FESEM). The presence of NiFe2O4NPs and AuNPs was confirmed by energy-dispersive X-ray spectroscopy (EDS) image of the NiFe2O4NPs/AuNPs/CPE surface. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to determine the structure and electrochemical characteristics of the CT-DNA/NiFe2O4NPs/AuNPs/CPE. Differential pulse voltammetry (DPV) was used to investigate the electrochemical behavior of RZB. Chronoamperometry (CA) was applied to study the effect of CT-DNA immobilization time on the peak oxidation current of RZB accumulated on the surface of the CT-DNA/NiFe2O4NPs/AuNPs/CPE. The results showed that, under optimum conditions, the prepared electrode responded linearly to RZB concentrations between 0.01 and 2.0 μM, with a 0.0033 μM detection limit (LOD) and 0.01 μM limit of quantification (LOQ). The parameters influencing the biosensor performance (temperature, CT-DNA immobilization time, and RZB/CT-DNA accumulation time) were optimized. DPV showed the displacement of the peak potential towards positive values and the reduction of its current, indicating that the drug could intercalate between the guanine base pairs of CT-DNA. Our biosensor was successfully applied for RZB measurement in human urine, blood serum, plasma samples, and tablets. The presented biosensor was fast response, sensitive, selective, cost-effective, and easy-to-use for RZB determination in pharmaceutical formulations and biological samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call