Abstract
Biological ion pumps, such as bacteriorhodopsin (bR), utilize photons to move ions against concentration gradients, offering energy harvesting and spatiotemporal control of chemical gradients. This capability goes far beyond the capabilities of today's synthetic devices, suggesting a hybrid approach to embed bRs in synthetic devices in order to direct the proton flow towards useful system applications. In this study, a hybrid silicon-based nanochannel network with integrated purple membranes (PM) containing bR was fabricated. The fabrication method combines thermal scanning probe lithography, etching techniques, atomic layer deposition, plasma-enhanced chemical vapor deposition, and photolithography to create devices with buried nanochannels on silicon substrates. PM patches were deposited onto specified sites by a tunable nanofluidic confinement apparatus. The resulting device holds the potential for locally controlling directed ion transport in micrometer scale devices, a first step towards applications, such as locally affected proton catalyzed chemical reaction networks. Furthermore, this fabrication strategy, employing a maskless overlay, is a tool for constructing intricate nanofluidic network designs which are mechanically robust and straightforward to fabricate.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.