Abstract
Cold atmospheric pressure plasma (CAP) has been shown to kill bacteria and remove biofilms. Here we report the development of a unique CAP array device consisting of a parallel stack of eight linear-discharge plasma elements that create a ~ 5 cm2 (2.4 cm × 2 cm) treatment area. The CAP device is fabricated from Low Temperature Co-fired Ceramic (LTCC) layers to create 24 mm long linear-discharge channels (500 μm gap) with embedded opposing silver metal electrodes. A 20 kHz AC voltage (0.5-5 kV) applied to the electrodes generates an Ar/O2 plasma between the plates, with the gas flow directing the reactive species toward the biological sample (biofilms, etc.) to affect the antimicrobial treatment. External ballast resistors were used to study discharge uniformity in the stacked array elements and internal thick film ballast resistors (≈150 kΩ) were developed to create a fully integrated device. Typical element discharge currents were 1-2.5 mA with the total array current tested at 20 mA to provide optimal device uniformity. The plasma discharge was further shown to produce reactive hydrogen peroxide and exert antimicrobial effects on Pseudomonas biofilms and Salmonella contaminated eggshell samples, with >99% of the bacterial cells killed with less than 60 seconds of plasma exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on plasma science. IEEE Nuclear and Plasma Sciences Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.