Abstract

Abstract The fully dense Ni–Al energetic structural material (ESM) was successfully fabricated by using shock consolidation, with no reaction between the constituents. The microstructure, quasi-static and dynamic compressive behavior and energetic characteristics were investigated. The results revealed a uniform microstructure along the cross-section and both phases were continuously distributed. No intermetallic was detected by the XRD and a 5 nm thick interlayer composed of amorphous phase and crystalline phase was observed at the Ni–Al interface by TEM. The interfacial strength was shown to have a strong effect on the ductility and the strength of Ni–Al ESM, and could be significantly improved by solid-state diffusion during the shock loading and the following heat-treatment. After heat-treatment the samples showed a high quasi-static compressive strength of 300 MPa and a ductility of 14.5%. At impact velocity above 671 m/s, the Ni–Al ESM was initiated and released a large amount of rising the shock temperature or energy. Its reaction efficiency strongly depends on the impact velocity. The good mechanical properties and energetic characteristics of the Ni–Al ESM shows a great potential for the shock consolidation in fabrication of metallic energetic structural materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call