Abstract
Silicon carbide (SiC), a wide bandgap semiconductor, is more desirable over conventional silicon (Si) to satisfy the increasing demands for microelectromechanical system (MEMS) to operate in harsh environments due to the excellent physical, mechanical and chemical inertness. Research in MEMS devices based on single or polycrystalline SiC on Si or SOI substrate, such as 3C-SiC polytype, have been widely carried out. Another promising candidate is “all”-SiC, i.e., homoepitaxial single crystal SiC layer on single-crystal SiC substrate, such as 4H and 6H-SiC polytypes. They truly exploit the superior material properties of SiC and provide advantages for MEMS devices to operate in hostile conditions. In this work, 4H-SiC MEMS actuators in cantilever and bridge configurations were fabricated by a surface micromachining process, and their dynamic responses were characterized to determine Young’s modulus of 4H-SiC and frequency performance. Resonant frequencies of 1.208MHz from cantilever and 1.338MHz from bridge actuators were achieved. These high frequency operation capabilities are particular interesting for ultrafast and high resolution sensors and actuators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.