Abstract

Silicon carbide (SiC) has recently attracted attention as a wide bandgap semiconductor with great potential for microelectromechanical systems (MEMS). SiC exhibits excellent electrical, mechanical, and chemical properties, making it well suited for harsh environment applications where traditional MEMS are constrained by the physical limitations of silicon (Si). This paper reviews the material properties, deposition techniques, micromachining processes, and other issues regarding the fabrication of SiC-based sensors and actuators. Special emphasis is placed on the properties that make SiC attractive for MEMS, and the Si-based processing techniques that have been adapted to realise SiC MEMS structures and devices. An introduction to micromachining is provided for readers not familiar with MEMS fabrication techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.