Abstract

A passive interposer, which is a way to bridge the feature gap between the integrated circuit (IC) and the package substrate, is a key building block for high performance 3-D systems. In this paper, polyimide (PI) is proposed as an alternative to glass and silicon based interposers for cost-effective 2.5-D/3-D IC integration. The development of interconnect technology using an ultrathin flexible polyimide interposer (UFPI) for 2.5-D/3-D packaging applications is described in detail. A semi-additive process consisting of copper seed layer deposition, photolithography, and electrolytic copper pattern plating is used for fabricating a double-sided flexible fan out interposer. A UFPI with electrodeposited micro-scale copper (Cu) fine patterns and laser drilling microvia is investigated using a scanning electron microscope (SEM), energy-dispersive spectrometry (EDS), X-ray spectrometry, and an optical 3-D profilometer. The UFPI with fine pitch on 12.5μm thin PI substrates has been demonstrated. The result is a proof-of-concept to exploit the opportunities of cost-effective 2.5D flexible interposer production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.