Abstract
Non-axisymmetric magnetic perturbations can fundamentally change neoclassical transport in tokamaks by distorting particle orbits on deformed or broken flux surfaces. This so-called non-ambipolar transport is highly complex, and eventually a numerical simulation is required to achieve its precise description and understanding. A new δf particle orbit code (POCA) has been developed for this purpose using a modified pitch-angle collision operator preserving momentum conservation. POCA was successfully benchmarked for neoclassical transport and momentum conservation in the axisymmetric configuration. Non-ambipolar particle flux is calculated in the non-axisymmetric case, and the results show a clear resonant nature of non-ambipolar transport and magnetic braking. Neoclassical toroidal viscosity (NTV) torque is calculated using anisotropic pressures and magnetic field spectrum, and compared with the combined and 1/ν NTV theory. Calculations indicate a clear δB2 scaling of NTV, and good agreement with the theory on NTV torque profiles and amplitudes depending on collisionality.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have