Abstract

Non-axisymmetric magnetic perturbations can fundamentally change neoclassical transport in tokamaks by distorting particle orbits on deformed or broken flux surfaces. This so-called non-ambipolar transport is highly complex, and eventually a numerical simulation is required to achieve its precise description and understanding. A new delta f particle code (POCA) has been developed for this purpose using a modi ed pitch angle collision operator preserving momentum conservation. POCA was successfully benchmarked for neoclassical transport and momentum conservation in axisymmetric con guration. Non-ambipolar particle flux is calculated in the non-axisymmetric case, and results show a clear resonant nature of non-ambipolar transport and magnetic braking. Neoclassical toroidal viscosity (NTV) torque is calculated using anisotropic pressures and magnetic fi eld spectrum, and compared with the generalized NTV theory. Calculations indicate a clear B2 dependence of NTV, and good agreements with theory on NTV torque pro les and amplitudes depending on collisionality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call