Abstract
To produce accurate movements, the human motor system needs to deal with errors that can occur due to inherent noise, changes in the body, or disturbances in the environment. Here, we investigated the temporal coupling of rapid corrections of the eye and hand in response to a change in visual target location during the movement. In addition to a "classic" double-step task in which the target stepped to a new position, participants performed a set of modified double-step tasks in which the change in movement goal was indicated by the appearance of an additional target, or by a spatial or symbolic cue. We found that both the absolute correction latencies of the eye and hand and the relative eye-hand correction latencies were dependent on the visual characteristics of the target change, with increasingly longer latencies in tasks that required more visual and cognitive processing. Typically, the hand started correcting slightly earlier than the eye, especially when the target change was indicated by a symbolic cue, and in conditions where visual feedback of the hand position was provided during the reach. Our results indicate that the oculomotor and limb-motor system can be differentially influenced by processing requirements of the task and emphasize that temporal eye-hand coupling is flexible rather than rigid.NEW & NOTEWORTHY Eye movements support hand movements in many situations. Here, we used variations of a double-step task to investigate temporal coupling of corrective hand and eye movements in response to target displacements. Correction latency coupling depended on the visual and cognitive processing demands of the task. The hand started correcting before the eye, especially when the task required decoding a symbolic cue. These findings highlight the flexibility and task dependency of eye-hand coordination.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have