Abstract

The composition of root exudates is modulated by several environmental factors, and it remains unclear how that affects beneficial rhizosphere or inoculated microorganisms under heavy metal (HM) contamination. Therefore, we evaluated the transcriptional response of Pseudomonas putida E36 (a Miscanthus x giganteus isolate with plant growth promotion-related properties) to Cd, Pb and Zn in an in vitro study implementing root exudates from M. x giganteus. To collect root exudates and analyse their composition plants were grown in a pot experiment under HM and control conditions.Our results indicated higher exudation rate for plants challenged with HM. Further, out of 29 organic acids identified and quantified in the root exudates, 8 of them were significantly influenced by HM (e.g., salicylic and terephthalic acid). The transcriptional response of P. putida E36 was significantly affected by the HM addition to the growth medium, increasing the expression of several efflux pumps and stress response-related functional units. The additional supplementation of the growth medium with root exudates from HM-challenged plants resulted in a downregulation of 29% of the functional units upregulated in P. putida E36 as a result of HM addition to the growth medium. Surprisingly, root exudates + HM downregulated the expression of P. putida E36 functional units related to plant colonization (e.g., chemotaxis, motility, biofilm formation) but upregulated its antibiotic and biocide resistance compared to the control treatment without HM.Our findings suggest that HM-induced changes in root exudation pattern may attract beneficial bacteria that are in turn awarded with organic nutrients, helping them cope with HM stress. However, it might affect the ability of these bacteria to colonize plants growing in HM polluted areas. Those findings may offer an insight for future in vivo studies contributing to improvements in phytoremediation measures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.