Abstract

The characteristic of semi-volatility enables persistent organic pollutants (POPs) almost ubiquitous in the environment. There is increasing concern about the potential risks of exposure to POPs due to their lipophilicity and readily bioaccumulation. Lipid droplets (LDs) are highly dynamic lipid storage organelles, alterations of intracellular LDs play a vital role in the progression of many prevalent metabolic diseases, such as type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). This article systematically reviewed the biological processes involved in LDs metabolism, the role of LDs proteins and LDs in metabolic diseases, and summarized updating researches on involvement of POPs in the progression of LDs-related metabolic diseases and potential mechanisms. POPs might change the physiological functions of LDs, also interfere the processes of adipogenesis and lipolysis by altering LDs synthesis, decomposition and function. However, further studies are still needed to explore the underlying mechanism of POPs-induced metabolic diseases, which can offer scientific evidences for metabolic disease prevention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.