Abstract

Abstract A wide range of risk measures can be written as functions of conditional tail moments (CTMs) and value-at-risk (VaR), for instance the expected shortfall (ES). In this paper, we derive joint central limit theory for semi-parametric estimates of CTMs, including in particular ES, at arbitrarily small risk levels. We also derive confidence corridors for VaR at different levels far out in the tail, which allows for simultaneous inference. We work under a semi-parametric Pareto-type assumption on the distributional tail of the observations and only require an extremal-near epoch dependence assumption on the serial dependence. In simulations, our semi-parametric ES estimate is often shown to be more accurate in terms of mean absolute deviation than extant non- and semi-parametric estimates. An empirical application to the extreme swings in Volkswagen log-returns during the failed takeover attempt by Porsche illustrates the proposed methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.