Abstract
We introduce SMARTboost (boosting of symmetric smooth additive regression trees), an extension of gradient boosting machines with improved accuracy when the underlying function is smooth or the sample small or noisy. In extensive simulations, we find that the combination of smooth symmetric trees and of carefully designed priors gives SMARTboost a large edge (in comparison with XGBoost and BART) on data generated by the most common parametric models in econometrics, and on a variety of other smooth functions. XGBoost outperforms SMARTboost only when the sample is large, and the underlying function is highly discontinuous. SMARTboost’s performance is illustrated in two applications to global equity returns and realized volatility prediction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.