Abstract
Searching for new anti-ischemic stroke (anti-IS) drugs has always been a hot topic in the pharmaceutical industry. Natural products are an important source of discovering anti-IS drugs. The aim of the present study is to extract, rapidly prepare and explore the neuroprotective effect of texasin, a main active constituent from Caragana jubata (Pall.) Poir., which is a kind of Tibetan medicine with a clear anti-IS effect. The results showed that 95% ethanol was the optimal extraction solvent. A three-step rapid preparation method for texasin was successfully established, with a purity of 99.2%. Texasin at the concentration of 25–100 µM had no effect on the viability of normal cultured PC12 cells; 12.5 and 25 µM texasin could enhance the viability of PC12 cells damaged by oxygen and glucose deprivation/reoxygenation (OGD/R), and their effects are comparable to the positive drug edaravone at the concentration of 50 µM. Compared with the normal group, the expression of Bcl-2 protein in OGD/R-injured PC12 cells was downregulated (p < 0.01), and that of PERK, eIF2α, ATF4, CHOP, Bax and Cleaved caspase-3 proteins were upregulated (p < 0.01, p < 0.001). Compared with the OGD/R group, 25 µM texasin could upregulate the expression of Bcl-2 protein (p < 0.01), and downregulate that of PERK, eIF2α, ATF4, CHOP, Bax and Cleaved caspase-3 proteins (p < 0.01, p < 0.001). The 7-OH and 1-O of texasin formed H-bonds with residues Cys891 of the hinge β-strand of PERK, which is crucial for kinase inhibitors. The above results suggest that the method established in the present study achieved rapid preparation of high-purity texasin. Texasin might inhibit neuronal apoptosis via the regulation of endoplasmic reticulum stress PERK/eIF2α/ATF4/CHOP signalling pathway to exert a protective effect on OGD/R-injured PC12 cells. Aiding by molecular docking, texasin was assumed to be a potential PERK inhibitor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.