Abstract

Objective. To investigate the protective effect of laminarin on PC12 cells damaged by oxygen glucose deprivation/reoxygenation (OGD/R) and its molecular mechanism. Methods. PC12 cells in the logarithmic phase were randomly divided into the control group, OGD/R group, and OGD/R+laminarin (0.5, 2.5, and 5 μg/ml) group. CCK-8 activity assay kit was used to detect cell viability. ELISA kit was performed to examine the levels of proinflammatory factors (TNF-α, IL-1β, and IL-6) and oxidative stress markers (ROS, LDH, and MPO). In addition, flow cytometry was employed to determine cell cycle and apoptosis. The expression of cell proliferation-related proteins (PCNA and Ki67), apoptosis-related proteins (Bcl-2, Bax, and Caspase-3), and PTEN/PI3K/AKT pathway-related proteins was evaluated by Western blot. Results. Compared with the control group, the cell viability was decreased significantly in the OGD/R group. CCK-8 results showed that laminarin could attenuate the damage of PC12 cell viability induced by OGD/R in a concentration-dependent manner. Meanwhile, the highest concentration of 5 μg/ml laminarin could significantly promote the viability of PC12 cells and the expression of PCNA and Ki67 than the OGD/R group. Additionally, ELISA assays showed that laminarin significantly inhibited the expression of proinflammatory factors (TNF-α, IL-1β, and IL-6) and the levels of oxidative stress markers (ROS, LDH, and MPO). Flow cytometry results demonstrated that laminarin promoted the cell cycle. And laminin upregulated the expression of apoptotic protein Bcl-2, while downregulated the expression of apoptotic proteins Bax and Caspase-3. Finally, laminarin significantly suppressed the expression of PTEN and facilitated the expression of PI3K and p-AKT compared to the OGD/R group. Conclusion. Laminarin could alleviate the OGD/R-induced PC12 cell neuronal injury via promoting cell activity and cycle and inhibiting inflammation, oxidative stress, and apoptosis. The mechanism may be related to the downregulation of PTEN protein and the activation of the PI3K/AKT pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call