Abstract

Cerebral ischemia/reperfusion injury (IRI) is one of major causes of ischemic organ damage. It is well established that inflammatory cytokines serve as regulatory factors in cerebral oxygen glucose deprivation/reoxygenation (OGD/R). However, the involving mechanism is not clear enough. OGD/R PC12 cells were used as a hypoxia/reoxygenation model. IL-32 expression and cell viability were detected by qRT-PCR and CCK-8 assay, respectively. Cell apoptosis were determined by flow cytometry and western blotting. Protein levels of inflammatory factors, and the activity of MPO, MDA and SOD were analyzed. Furthermore, western blot assay was carried out to assess protein levels of Nrf2, keap1, NQO-1, p-p65, p-IκBα, p65 and IκBα. The results revealed that IL-32 expression was significantly upregulated in PC12 cells induced by OGD/R. Nrf2, keap1 and NQO-1 level was reduced while phosphorylation level of p65 and IκBα was up-regulated in OGD/R-induced PC12 cells. Mechanism investigations found that IL-32 silence elevated the level of Nrf2, Keap1 and NQO-1, reduced p-p65 and p-IκBα level, and regulated the contents of TNF-a, IL-1β, IL-6 and MCP-1 in OGD/R PC12 cells. In addition, knockdown of IL-32 suppressed production of intracellular ROS, elevated SOD activity, reduced MPO and MDA content, and enhanced cell viability. Furthermore, cell apoptosis was induced in OGD/R PC12 cells with IL-32 silence. However, Nrf2 inhibitor reversed the effects of IL-32 knockdown on OGD/R PC12 cells. This research suggests that IL-32 silence may alleviate OGD/R and Nrf2 plays an important role in the protection by IL-32 silence on PC12 cells induced by OGD/R.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call