Abstract

Microalgal polysaccharides have been reported in many studies due to their uniqueness, biocompatibility, and high value, and Rhodosorus sp. SCSIO-45730 was an excellent source of polysaccharides and β-glucans. However, the polysaccharides from the red unicellular alga Rhodosorus sp. SCSIO-45730 have barely been studied. In this work, hot water extraction of Rhodosorus sp. SCSIO-45730 polysaccharides (RSP) was optimized using response surface methodology (RSM) based on Box–Behnken design (BBD). The maximum RSP yield (9.29%) was achieved under the optimum extraction conditions: liquid–solid ratio of 50.00 mL g−1; extraction temperature of 84 °C; extraction time of 2 h; and extraction times of 5 times. The results of physicochemical characterization showed that RSP had high sulfate and uronic acid with content of 19.58% and 11.57%, respectively, rough layered structure, and mainly contained glucose, galactose, xylose, and galacturonic acid with mass percentages of 34.08%, 28.70%, 12.46%, and 12.10%. Furthermore, four kinds of antioxidant assays were carried out, and the results indicated that RSP had strong scavenging activities on ABTS and hydroxyl radical and moderate scavenging activities on DPPH and ferrous chelating ability. These results indicated that RSP showed potential as a promising source of antioxidants applied in food, pharmaceutical, and cosmetics industry.Supplementary InformationThe online version contains supplementary material available at 10.1007/s10811-021-02646-2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.