Abstract
A method is presented for increasing the accuracy of measuring the spectra of nanoscale structures, the studies of which are difficult due to the low signal-to-noise ratio and, as a consequence, the low sensitivity of scientific equipment. The method is based on the accumulation of the signal along the spectrum. In this case, noise is reduced due to its chaotic nature. The method was used to analyze thin films of tin dioxide SnO2 deposited on a glass substrate. The studied samples are made on the basis of sol-gel technology. The analyzed spectra were obtained on a DRON-6 X-ray diffractometer designed to study the composition and structure of materials. A standard analysis of the crystallographic planes of the samples under study is practically impossible due to the high noise level and the negative influence of the background signal from the glass substrate. Analysis based on the proposed approach was performed in the following sequence of actions: measuring the spectrum of an empty substrate; accumulation of the background signal from the substrate along the spectrum; spectrum measurement from a substrate with nano-objects; subtracting the accumulated background signal from the substrate; signal accumulation from nano-objects along the spectrum. In the analysis, the background signal fromthe substrate is correctly subtracted and the signal-to-noise ratio of the useful signal increases by (2a+1)^1/2 times, where a is the accumulation width.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have