Abstract
Aldose reductase inhibitors (ARIs) provide an important therapeutic and preventive opportunity against hyperglycemia associated diabetic complications. The methanolic extracts of 12 species from the genus Artemisia exhibited significant in vitro rat lens AR (RLAR) inhibitory activities with IC50 values ranging from 0.51 to 13.45μg/mL (quercetin, 0.64μg/mL). Since the whole plant of Artemisia montana showed the highest RLAR inhibitory activity, bioassay-guided fractionation was performed to obtain ethyl acetate and n-butanol fractions. Repeated column chromatography of two active fractions, yielded fifteen compounds, including four chlorogenic acids (3,5-di-O-caffeoylquinic acid, chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid), six flavonoids (apigenin, luteolin, quercetin, isoquercitrin, hyperoside, luteolin 7-rutinoside), and five coumarins (umbelliferone, scoparone, scopoletin, esculetin, and scopolin); their structures were confirmed by spectroscopic methods. 3,5-Di-O-caffeoylquinic acid and chlorogenic acid, as well as test flavonoids, displayed the most potent RLAR inhibitory activities with IC50 values ranging from 0.19 to 5.37μM. Furthermore, the HPLC profiles of the ethyl acetate and n-butanol fractions indicated that 3,5-di-O-caffeoylquinic acid, chlorogenic acid, and hyperoside, as major compounds, might play crucial roles in RLAR inhibition. The results suggest that A. montana and three key AR inhibitors therein would clearly be potential candidates as therapeutic or preventive agents for diabetic complications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have