Abstract
When semiconductor lasers SLs are exposed to filtered optical feedback (FOB), they behave in two different ways. Under weak or strong feedback, the first is a singularly stable longitudinal mode with a small linewidth. The second is the so-called coherence breakdown condition, which also includes low frequency fluctuations (LFF) and chaotic oscillations. The latter has received a lot of attention recently due to the possible uses of chaotic lasers in chaotic lidar, covert communications, and chaotic correlation time-domain optical reflectometers, while the former has received a lot of research in recent years. We investigate the behavior of a quantum dot (QD) semiconductor laser subject to FOF from two separate external cavities both, numerically and experimentally. Our findings show that the second FOF allows for rich adjustment of the laser frequency. Our analysis of double-filtered optical feedback (DFOF) lasers is on fundamental solutions, sometimes referred to as continuous waves (CW) or external filtering modes (EFM), which result in a QD laser output with constant amplitude and frequency. The time delay suppression is dependent on the spectral width of the filter and how far it is from the solitary laser frequency, according to numerical calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Membrane Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.