Abstract
We underscore here a novel approach to extend the boundaries of mechanical properties of Ti-Nb low-carbon steel via combination of ultrafast cooling and deformation during austenite-to-ferrite transformation. The proposed approach yields a refined microstructure and high density nano-sized precipitates, with consequent increase in strength. Steels subjected to ultra-fast cooling during austenite-to-ferrite transformation led to 145 MPa increase in yield strength, while the small deformation after ultra-fast cooling process led to increase in strength of 275 MPa. The ultra-fast cooling refined the ferrite and pearlite constituents and enabled uniform dispersion, while the deformation after ultra-fast cooling promoted precipitation and broke the lamellar pearlite to spherical cementite and long thin strips of FexC. The contribution of nano-sized precipitates to yield strength was estimated to be ~247.9 MPa and ~358.3 MPa for ultrafast cooling and deformation plus ultrafast cooling processes. The nano precipitates carbides were identified to be (Ti, Nb)C and had a NaCl-type crystal structure, and obeyed the Baker-Nutting orientation relationship with the ferrite matrix.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have