Abstract
An extended integral equation is developed for electromagnetic scattering from a perfectly conducting cylinder and a dielectric cylinder. The conventional surface integral equations cannot yield unique solutions when the wavenumber of the electromagnetic wave is equal to an eigenwavenumber of the system. Several methods to overcome this difficulty have been presented, but each method includes some drawbacks. A numerical method is proposed in which the boundary element method is applied to the extended integral equations with the observation points lying on a closed surface inside the scatterer. It is shown that the extended integral equations have unique solutions for any given wavenumber. As examples, plane wave scattering from a perfectly conducting elliptic cylinder, a dielectric elliptic cylinder, and a dielectric rectangular cylinder is numerically analyzed.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have