Abstract

Dyadic Green's functions in two regions separated by an infinitely long elliptical dielectric cylinder are formulated in this paper. As an application, the plane electromagnetic wave scattering by an isotropic elliptical dielectric cylinder is revisited by applying these dyadic Green's functions and the scattering-to-radiation transform. First, the dyadic Green's functions are formulated and expanded in terms of elliptical vector wave functions. The general equations are derived from the boundary conditions and expressed in matrix form. Then the scattering and transmission coefficients coupled to each other are solved from the matrix equations. To verify the theory developed and its applicability, we revisit the plane electromagnetic wave scattering (of TE- and TM-polarizations) by an infinitely long elliptical cylinder, and consider it as a special case of electromagnetic radiation using the dyadic Green's function technique. The derived equations and computed numerical results are then compared with published results and a good agreement in each case is found. Special cases where the elliptical cylinder degenerates to a circular cylinder and where the material of the cylinder is isorefractive are also considered, and the same analytical solutions in both cases are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call