Abstract

Over the last decade, several methods [1–8] have been developed to obtain the dyadic Green's functions (DGFs) of layered anisotropic media. The most commonly used methods to find the DGFs are the Fourier transform method with differential formulation [6], the method of eigen-function expansion [7], the matrix formulation [8], and the dyadic decomposition techniques [5, 9–11]. In [8], the dyadic Green's function is formulated based on the tangential electric field and current at the interface, which is not suitable for the problem with z-directed current. The dyadic decomposition techniques as discussed in [5, 9–11] are more general and can provide the complete set of the dyadic Green's functions but only the case when the source is in the free space has been considered. If the source is located in a biaxial slab, then reciprocity theorem for the Green's function can be invoked to obtain the DGFs as in [12]. However, the reciprocity holds true only when the slab is filled with reciprocal medium such as uniaxial medium, biaxial medium, etc. For non-reciprocal medium such as the gyroelectric or gyromagnetic medium, the reciprocity relation for the Green's function no longer holds. The DGFs for source located in a non-reciprocal slab cannot be obtained using the reciprocity theorem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.